

AP Physics 1 - Test 08 - Linear Momentum

100 7 Score:

- Momentum may be expressed in:
- kg/m
- gram·s
- or kg.
- kg/(m·s)
- Two bodies, A and B, have equal kinetic energies. The mass of A is nine times that of B. The ratio of the momentum of A to that of B is:
- K= = mv
- VA = 1 VB
- PA = MAVA = 9MB (13 VB) = 3 MBVA

- 1:3
- MA= 9MB
- PB = MBVB

- 3. A 3.0 kg steel block is at rest on a frictionless horizontal surface. A 1.0 kg lump of clay propelled horizontally at 6.0 m/s toward the block as shown in the diagram. Upon collision, the clay and steel block stick together and move to the right with a speed of: M, V, + m = = (m, + m) V
- 1.5 m/s
- 2.0 m/s
- 3.0 m/s
- (1)(6)

- Two objects, P and Q, have the same momentum. Q has more kinetic energy than P if it:
- weighs more than P
- is moving faster than P
- weighs the same as P
- is moving slower than P
- is moving at the same speed as P

momentum Scales linearly with relocity

Kinetic energy Scales Squarely with Velocity,

K= = mnx P= mV

scale linearly with mass. However the momentums can equal more Trineric energy Q is lighter, but faster

V4 = -1.5 m/5
$V_1 = \beta M/\beta$
5. A 1.0-kg ball moving at 2.0m/s perpendicular to a wall rebounds from the wall at 1.5m/s. The change in the momentum of the ball is:
(c) 0.5N·s toward wall $= (1)(-1.5 - 1)$
3.5N·s away from wall
E 3.5N·s toward wall $\Delta P = -3.5 \text{ kg} \frac{\text{M}}{\text{S}} \text{ or } -3.5 \text{ N·S}$
6. A 2.5-kg stone is released from rest and falls toward Earth. After 4.0 s, the magnitude of its momentum is:
B 78 kg·m/s $\Delta P = F \Delta t = mg \Delta t = (2.5)(9.8)(4)$
C 39 kg·m/s
(c) 39 kg·m/s (D) 24 kg·m/s $\Delta P = 198 \text{ kg·m/s}$
(E) zero
7. A 64-kg woman stands on frictionless level ice with a 0.10-kg stone at her feet. She kicks the stone with her foot so that she acquires a velocity of 0.0017m/s in the forward direction. The velocity acquired by the stone is: $V_1 = +0.0017$
(A) 1.1m/s forward Total initial momentum = total final momentum
1.1m/s backward $m_1 r_1 + m_2 r_2 = m_1 v_1' + m_2 v_2'$
(c) 0.0017m/s forward
0.0017m/s backward $O = (64)(0.0017) + (0.1) V_{\lambda}$
(E) none of these $\sqrt{3}^2 = -1.088 \text{ m/s}$
8. Two spacemen are floating together with zero speed in a gravity-free region of space. The mass of spaceman A is 120 kg and that of spaceman B is 90 kg. Spaceman A pushes B away from him with B attaining a final speed of 0.5m/s. The final recoil speed of A is:
final recoil speed of A is: (A) zero (A) zero (A) zero
$0.38 \text{ m/s} \qquad 0 = (120) \text{ V}_{1} + (90) (0.5)$
(c) 0.5 m/s
(C) 0.5 m/s $(D) 0.67 m/s$ $(D) 0.67 m/s$
E 1.0 m/s
9. A projectile in flight explodes into several fragments. The total momentum of the fragments immediately after this explosion:

- is the same as the momentum of the projectile immediately before the explosion
- (B) has been changed into kinetic energy of the fragments
- is less than the momentum of the projectile immediately before the explosion
- (D) is more than the momentum of the projectile immediately before the explosion
- (E) has been changed into radiant energy

shoe to	nan is marooned at res the right at 15m/s. If th oves to the left with a sp	e man weighs 720N a	ice. In desperation, h nd the shoe weighs 4 = 73,5 kg	te hurls his 4.0N, the 4.00 kg
A 0B 0.021	m/s m/s	$V_{\nu} = m_{\nu} v_{\nu} + m_{\nu}$		70,108 kg
0.083	m/s	0 = (73.5) V'	+(0.408)(15)	,
D 15 m	's			
(E) 2700		V,' = -0,0	083 m/3	
11. A 1	10-kg block of ice is at re ed in an easterly direction	est on a frictionless ho on for 1.0 s. During th	orizontal surface. A 1 is time interval, the l	.0-N force block:
A acqui	res a speed of 1 m/s			
B move	s 10 cm	AP= FA	1t = (1)(1) = 1	*
acqui	res a momentum of 1.0 kg·m	/s		
(D) acqui	res a momentum of 1.0 J			
E none	of the above			
12. Th	e physical quantity "im _l	pulse" has the same d	imensions as that of	•
A force				ų
B powe				
(c) energ	зy	= Db		
mom	entum	Puls & Chan	Secretary 200	
(E) work	(Pulse is Change	in an objects	momentum
sidewal	0.2-kg rubber ball is dro k below at 30m/s and re ision is: V; = -30	ebounds up at 20m/s. Van	The impulse on the	ball during
10N ·	s upward 🦪 🕽	= NAM = 9AS	$m(v_{i}-v_{i})-fa$	NG de ()
(B) 10N ·	s downward		10,	4)(40-(-30))
(c) 2.0N	· s upward	SAP = MAV =	1 7=+	10 N.S
D 2.0N	· s downward			
(E) 9.8N	· s upward			•
expand windsh	student's life was saved ed in front of his head. ield would have stoppe red to the windshield, t	If the car had not bee d the motion of his he	n equipped with an a	airbag, the
(A) cause	es a much smaller change in i	momentum		
B exert	s a much smaller impulse			,
C cause	es a much smaller change in l	kinetic energy	,	
exert	s a much smaller force			
(F) does	much more work			

20. A 75-kg m	man is riding in a 30-kg cart at 2.0m/s. He jum round with no horizontal velocity. The final sp	ips off in such a way	as to
0 3 2.0 m/s	(m,+m) v = m, v, +m, v, 1	Mi = man	Vi= man
3) 2.0 m/s	All lutto	M. T. (a.A+	V - (-)
3.0 m/s	$(105)(2) = (30) V_{2}'$	$M_1 = man$ $M_2 = (ant)$	vy=(art
5.0 m/s			
5.0 m/s 7.0 m/s	Vz = 7 m/5		
21. An elastic	c collision is one in which:		
momentum is	is not conserved but kinetic energy is conserved		

- total mass is not conserved but momentum is conserved
- kinetic energy and momentum are both conserved
- momentum is conserved but kinetic energy is not conserved
- the total impulse is equal to the change in kinetic energy
- Ball A of mass 5.0 kg moving at 20 m/s collides with ball B of unknown mass moving at 10 m/s in the same direction. After the collision, ball A moves at 10 m/s and ball B at 15 m/s, both still in the same direction. What is the mass of ball B?

- 23. At the circus, a 100 kg clown is fired 15 m/s from a 500 kg cannon. What is the recoil speed of the cannon?
- Stants with 1 object, ends with 2 objects 75 m/s
- = 100(15) + 500 V2' V2' = -3 m/5 5.0 m/s
- 24. Which two quantities can be expressed using the same units?
- energy and force
- impulse and force
- momentum and force
- impulse and momentum

impulse is change

- 25. A 3.1 kg gun initially at rest is free to move. When a 0.015 kg bullet leaves the gun with a speed of 500 m/s, what is the speed of the gun?
- Cmitmy = mivi + my Vy
- 2.4 m/s
- = (0.015)(500) + (3.1) V2'
- 500 m/s

7.5 m/s

- Vs'= 2.4 m/s
- 26. The cart's change of momentum Δp_{\downarrow} is
- -20 kg m/s
- -10 kg m/s
- 0 kg m/s
- 10 kg m/s
- 30 kg m/s
- SP=MAV

- 27. A 2.0 kg object moving to the right with speed 0.50 m/s experiences the force shown. What are the object's speed and direction after the force ends?
- 0.50 m/s left
- At rest
- 0.50 m/s right
- 1.0 m/s right
- 2.0 m/s right

 $\Delta V = \frac{\Delta P}{\Delta t} = \frac{1}{2} = \frac{0.5}{0.5}$ 0.5 + 0.5 = 1.0

- 28. A 2.0 kg object moving to the right with speed 0.50 m/s experiences the force shown. What are the object's speed and direction after the force ends?
- 0.50 m/s left
- At rest
- 0.50 m/s right
- 1.0 m/s right
- 2.0 m/s right

- AP= -0,5 K+
 - 0.5+(-0.5)
- $F_{x}(N)$ -2-
- 29. A force pushes the cart for 1 s, starting from rest. To achieve the same speed with a force half as big, the force would need to push for
- 1/45
- 1/2 s

DP=MAV= FAt

for	A light plastic cart and a heaven 1.0 s, starting from rest. After the histic cart is that of the h	the force is	s removed, t	ushed w he mom	ith the same fo entum of the lig	orce ght
\bigcirc A	Greater than				\vec{F}	
	Equal to					
$\overline{(c)}$	Less than				\vec{F}	
	Can't say. It depends on how big the fo	orce is.			-	
to an ha the	You awake in the night to fin save yourself is to throw somet d close it, giving you a few secove both a sticky ball of clay and same mass. You depends on making the right of	thing that with the second super-bound of the super-bours only ti	will hit the b ape out the ouncy Super	ack of yo window. ball next	our bedroom do You happen to to your bed, b	oor oth
	Throw the Superball.	Plastic	Collisions	have	larger	¢
B	Throw the ball of clay.					
(c)	It doesn't matter. Throw either.	INDIAC.	MM Chang	es T	NaN	
32 ch	. A mosquito and a truck have ange of momentum?	a head-or	ic collision. Sp	olat! Whi	ch has a larger	
\bigcirc	The mosquito					
B	The truck					٠
-	They have the same change of mome	ntum.			,	
D	Can't say without knowing their initial	velocities.				
33 to	. The two boxes are sliding alo gether. Afterward, the velocity o	ng a friction	onless surfa boxes is	ce. They	collide and stic	k
A	2 m/s to the left					e
В	1 m/s to the left				1 kg 4 m/s 2 m/s 2	kg kg
	0 m/s, at rest				*	
	1 m/s to the right					
E	2 m/s to the right					
	. The two boxes are on a fricti st, but an explosion between th kg box going?	onless sur em has jus	face. They hast pushed th	ad been : em apar	sitting together t. How fast is th	at ne
A	1 m/s				×	
	2 m/s				4 m/s 2 kg	-
(c)	4 m/s					
D	8 m/s					
E	There's not enough information to tel	1.				*

35. The 1-kg box is sliding along a frictionless surface. It c the 2-kg box. Afterward, the speed of the two boxes is	ollides with and sticks to
A 0 m/s	
1 m/s	1 kg 3 m/s 2 kg
C 2 m/s	
D 3 m/s	
E There's not enough information to tell.	
36. Curling is a sport played with 20 kg stones that slide a Suppose a curling stone sliding at 2.5m/s strikes another st 0.002 seconds. What is the average force acting on the curl time.	one and comes to rest in ing stoneduring this
(A) 125000 N F AP 20 (2 2.5)	
(A) 125000 N $F = \frac{\Delta P}{\Delta t} = \frac{20 (20 2.5)}{0.00}$	- = 15000
(c) 12500 N	
25000 N	
37. A tiger is running in a straight line. If we double both the tiger, the magnitude of its momentum will increase by (A) 8 (B) 16 (C) 2 (A) 4	the mass and speed of what factor?
38. An object of mass m = 2.0 kg experiences a changing f graph. For the time interval shown, what is the total chang object?	orce depicted by the e in momentum of the
(() 35 kg□m/s	8 , 1
B) 70 kg@m/s	8 10 10 10 5 Time (s)
C -35 kg□m/s	1 2 3 4 5
D -70 kg0m/s	area = 35