Algebra II

Exponential & Logarithmic Applications with Calculator A

Name

Period Date

Evaluating Logarithms using the calculator.

Use the calculator to find the following values rounded to the nearest thousandth.

0.972 1. log 9.37

3 · 1 / 3 2. log₅ 150

6 - 6 44 3. log₂ 100

13.084 4. In 481,000

-2-497 6. In .0823

Solve each equation using the Nspire. Evaluate. Round the solutions to the nearest thousandth.

Solve each equation using the Nspire. Evaluate: Round the Solutions to the nearest thousand the		
7. $4^x = 2400 \log_4 2400 = 1$	8. $5^{2x} = 8 _{095} 8 = 2 \times$	
5.614 =X	10gs 8 = X	
	0.646 = X	
9. $3^{x+2} = 47$	10. $4^{2x+1} = 2.5$ $\log_4 2.5 = 2 \times +1$	
log 3 47 = X+2	logy 2.5 -1 = 2x	
109347-2 = x	$\log_4 2.5 - 1 = X$	
1.564 = ×	$\frac{2}{-0.170} = X$	
11. $e^{2x} = 5^{x-1}$ using Napire	12. $2(3)^{-x+4} - 5 = \log_2(x+2)$ Using 12 spire $f_1(x) = 2(3)^{-x+4} - 5$	
$f_{1}(x) = e^{2x}$ $x = -4.12$		
$f_2(x) = 5^{x-1}$	f2(x) = log2 (x+2)	
	x = 2.83	
11. $e^{2x} = 5^{x-1}$	12. $2(3)^{-x+4} - 5 = \log_2(x+2)$	
Same	Same	

Appreciation	$V_t = P(1+r)^t$	V_t is the appreciated value of the item, P is the initial value of the item, r is the fixed rate of increase, and t is the number of times the increase is applied
Depreciation	$V_t = P(1-r)^t$	V_t is the depreciated value of the item, P is the initial value of the item, r is the fixed rate of decrease, and t is the number of times the decrease is applied

Write the equation that models the situation and solve. Round answers to the nearest hundredth.

13. Imagine a video game where the player's game life starts at 100% and decreases by 5% of his current life with each hit the player takes. If V_t represents the percentage of game life after t hits, find the number of hits the player can take and still have 35% of his game life left)

Use
$$V_{+} = P(1-r)^{+}$$
 $\frac{35}{100} = \frac{100}{100}(1-6.05)^{+}$

$$V_t = P(1-r)^t$$

13. A \$175,000 home increases in value at a constant rate of 6% per year.

a. In how many years will the house be worth \$250,000?

$$V_t = P(1+r)^t$$

$$\frac{250,000 = 175,000}{175,000} = \frac{10}{7} =$$

b. What will be the value of the home in 20 years?

$$V_{20} = 175,000 (1+0.06)^{20}$$
 $V_{20} = $561,249$

14. A car valued at \$35,000 depreciates at a constant rate of 14% per year.

a. What will the value of the car be in two years?

$$V_{t} = P(1-r)^{t}$$
 $V_{2} = 35,000 (1-0.14)^{2}$
 $= $25,886$

b. In how many years will the car be worth \$15,000?

$$\frac{15,000}{35,000} = \frac{35,000}{35,000} \left(1-0.14\right)^{\frac{1}{2}} + \frac{109.86}{35,000} \cdot \frac{3}{7} = t$$

$$\frac{3}{3} = 0.86^{\frac{1}{2}} + \frac{1}{3} \cdot \frac{3}{5} \cdot \frac{$$

15. Suppose a smart phone company currently charges \$800 for the newest smart phone. The value of this latest phone will decrease 5% each month. How long will it take for the cost of the phone be \$500?

phone will decrease 5% each month. How long will it take for the cost of the
$$V_{\pm} = P(1-r)^{\pm}$$

$$V_{\pm} = P(1-r)$$

16. Dave bought a new car 8 years ago for \$8400. To buy a new car comparably equipped now would cost \$12,500. Assuming a steady rate of increase, what was the yearly rate of inflation in car prices over the 8 year period?

Inflation is when
$$r = 0.05$$
 prices go up $r = 0.05$ $r = 0.05$

17. A baseball card bought for \$50 increases 3% in value each year. What will it be worth in 25 years?

$$V_t = P(Hr)^t$$

= 50 (1+0.03)25
 $V_0 = 104.69

18. A piece of machinery valued at \$250,000 depreciates at 12% per year by the fixed rate method. After how many years will the value have depreciated to \$100,000?

years will the value have depreciated to \$100,000?

$$V_t = P(1-r)^t$$
 $V_t = P(1-r)^t$
 $V_t = V_t = V_t$
 $V_t = V_$

19. A new snowmobile costs \$4200. The value of the snowmobile decreases by 10% each year. Estimate the value after 3 years. How long will it take the snowmobile to be valued at \$2500? $\frac{1}{4}$ $\frac{1}{4}$

20. The deer population increases at a constant rate of 2% per year. There are 1573 deer on the King Ranch this year. How many deer will be on the ranch in 10 years?

 $V_{t} = P(1+r)^{t}$ $V_{t0} = 1573(1+0.02)^{10}$ $V_{t0} = 1.917$ deers in logeans.