Kinematics

1 D Kinematics

2 D Kinematics

Graphing motion (Note: the graphs below do not represent the same moving object)

Forces

Newton's Laws

- 1. Objects maintain constant velocity unless there is force.
- "No forces" does not mean "no motion". "No forces" means no acceleration (constant motion/velocity).

$2.\Sigma F = ma$

- -You need to choose only one direction at a time, e.g. $\Sigma F_x = ma_x$ $\Sigma F_y = ma_y$
- **3.** Every force on an object, has an **equal and opposite** force on a different object.
- Since the forces are on different objects they do not cancel.

Some common kinds of forces

$$\begin{split} F_{gravity} &= mg = Gm_1m_2/r^2 & \text{Note: On another planet } g = GM_p/R^2 \\ F_{normal} &= mg & \text{unless} \begin{pmatrix} 1. \text{ On incline } F_n = mg\cos\theta \\ 2. \text{ Being pushed down or up } F_n = mg \pm f\sin\theta \\ 3. \text{ In elevator going up or down } F_n = m(g\pm a) \end{pmatrix} \\ Note: Scales measure normal force \\ F_{static} &\leq \mu_s F_{normal} \\ F_{kinetic} &= \mu_k F_{normal} \\ F_{spring} &= kx \\ F_{buoyancy} &= \rho Vg \\ F_{electric} &= kq_1 q_2/r^2 = qE \\ F_{magnetic} &= qvBsin\theta = ILBsin\theta \end{split}$$

Common types of force problems

Inclined plane

Mass pulled by string

Table and pulley

Mass pushed by person

Mass on string

Pulley

Solving 2D force (vector) problems

1. Draw the forces exerted on the object you are concerned with

(These are forces **ON** the object, not the forces the object is exerting on other objects)

2. Break each force into vertical and horizontal components $\mathbf{F}_{\mathbf{y}}$ and $\mathbf{F}_{\mathbf{x}}$

(For completely vertical or horizontal forces one component will be zero, the other is \pm F) (For diagonal forces you need to use sin and cos to break the vector into components) (Up or Right is a positive component, Left or Down is a negative component)

3. Use $\Sigma F_y = ma_y$ and $\Sigma F_x = ma_x$

i.e. for the example shown $\Sigma F_x = F_a \cos\theta + 0 + (-F_c) = Ma_x$ $\Sigma F_y = F_a \sin\theta + (-F_b) + 0 = Ma_y$

4. If object is not moving in the x direction (or constant speed in x direction) then $\Sigma \mathbf{F}_{\mathbf{x}} = \mathbf{0}$

Similarly for the y direction, if the object is not moving vertically (or it is moving at constant speed vertically) then $\Sigma \mathbf{F_y} = \mathbf{0}$

Centripetal Motion

$\Sigma F = m v^2/r$

- Forces directed into the circle are positive and forces directed out of the circle are negative
- You can always use this if something is going in a circle (but you don't always have to use this)
- If an object is moving with constant speed in a circle then $\mathbf{v} = 2\pi \mathbf{r}/\mathbf{T}_{period}$

Kepler's Laws

- 1. Planets follow an ellipse with Sun as one focal point.
- 2. All planets sweep out equal areas in equal times.
- 3. The value of R^3/T^2 is the same for each planet.

Note: Kepler's Laws and the 3rd Law derivation work even for objects (moon, satellite) orbiting a planet. You just use mass of planet instead of the mass of the Sun.

Derivation of Kepler's 3rd Law

1.
$$\Sigma F = m v^2/r$$

$$_{2.}\quad \frac{\mathrm{GM}_{p}\mathrm{M}_{s}}{\mathrm{R}^{2}}=\mathrm{M}_{p}\mathrm{v}^{2}/\mathrm{R}$$

$$3. \quad \frac{G M_s}{R^2} = v^2/R \qquad \text{(cancel Mp)}$$

4.
$$\frac{G\,M_s}{R^2} = \frac{(2\pi R/T)^2}{R}$$
 (Sub in formula for v)

5.
$$\frac{GM}{4\pi^2} = \frac{R^3}{T^2}$$
 (Bring all R's to right side and move $4\pi^2$ to left side)

so $\frac{R^3}{T^2}$ is constant (since Ms, G, and $4\pi^2$ are the same for each planet)

Energy and Work

Work

W=Fdcosθ_{Ed}

(Note: Area under F vs. x graph equals work.)

- Work tells you how much energy is tranfered
- If a force pushes in the direction of d (tries to speed up object), force does + work
- If the object doesn't move d=0, or the force is perpendicular to motion, W=0
- The work done by gravity is $W_g = \pm mgh$ (use + if moving down, if moving up)
- Work-Kinetic energy $W_{total} = \Delta KE = KE_f - KE_i$

Types of energy

 $KE = \frac{1}{2}mv^2$

PEgravity = mgh

(you choose where h=0)

 $PE_{spring} = \frac{1}{2}kx^2$

(x is the compression or extension)

• μFnd for friction

Thermal Energy = • Fair d for air resistance

use W = Fd

· or just determine how much mechanical energy was lost (PE+KE)_i - (PE+KE)_f

 $Q_{heat} = mc\Delta T = mL$

 $PE_{electric} = qV = kq_1q_2/r$

 $E_{canacitor} = \frac{1}{2} CV^2 = \frac{1}{2} QV$

 $E_{photon} = hf$

 $F = mc^2$

Momentum and Collisions

Momentum

p = mv [kg m/s]

- -Momentum is a vector and <u>direction matters</u> (+ if going right, if going left)
- -A situation where two objects of mass m move with speed v toward each other has no total momentum
- -Momentum is always conserved

$\Sigma F = \Delta p/\Delta t$ [which also = ma]

-This is a way to relate changes in momentum to forces

Impulse = $\Delta p = F\Delta t$ [Ns]

-Area under F vs. time graph is the Impulse (change in momentum)

Collisions

-momentum is conserved in every type of collision (elastic and inelastic)

a. Elastic collisions

- KE is conserved
- -objects must bounce off each other
- -Note: For elastic collisions, $(v_1 v_2)_{initial} = -(v_1 v_2)_{final}$

b. Inelastic collisions

- KE is not conserved, KE gets lost in the collision (turns into thermal energy, etc)
- -objects can stick together (perfectly inelastic) or bounce off each other

Note: To determine whether a collision is elastic or inelastic just compare the KE_{tot} before and after the collision.

- If $KE_{tot\ initial}$ = $KE_{tot\ final}$, then it is elastic. If not, it is inelastic.

Torque and Center of Mass

Torque

$$\tau = rF \sin \theta_{rF}$$

- r is from the axis to the point where the force is applied

Equilibrium

$$\Sigma F = 0$$
 $\Sigma \tau = 0$

- no acceleration and no angular acceleration (usually means at rest)
- i.e. Torque in CW direction equals torque in CCW direction

Center of mass

$$CM = \frac{1}{M_{tot}} \Sigma mr = \frac{1}{M_{tot}} (m_1 r_1 + m_2 r_2 + ...)$$

- r is distance from arbitrary point (end of object, middle of object, etc.) to mass m or dm, but if there is an obvious axis it is usually a good idea to use it
- the CM tells you the position where an object could balance
- the CM is also where you could treat all the mass as residing

Waves and Simple Harmonic Motion

Simple Harmonic oscillators

- position described by $x(t) = A\sin(\omega t)$ or $x(t) = A\cos(\omega t)$ $\omega = 2\pi/T [rad/sec]$

$$\omega = 2\pi/T [rad/sec]$$

 $T_{\text{mass on spring}} = 2\pi \left[m/k \right]^{1/2}$

Remember that $\mathbf{f} = \mathbf{1/T}$ [Hz]

- -Spring Period T does not depend on g or amplitude
- (for horiz. mass on spring, because at the maximum displacement A the KE=0)

 $T_{\text{pendulum}} = 2\pi \left[L/g \right]^{1/2}$

- Pendulum Period T does not depend on mass or amplitude (as long as the amplitude is small $\theta < 20^{\circ}$)

Waves

 $v = \lambda f$

(v is wave speed, λ is wavelength, f is frequency)

Note: this eqn. is true for every wave

Transverse waves: medium moves perpendicular to velocity of wave (e.g. ripple on pond)

Longitudinal waves: medium moves parallel to velocity of wave (e.g. sound waves)

Standing waves

- Nodes: points that don't move (dest. int) **Antinodes**: points of maximum displacement (const. int)

- Open-Open pipe is node-node

Open-closed pipe is Node-Antinode

Circuits

Current

- defined to be in the direction of positive charge flow (or opposite direction of e)
- is directed out of the + terminal of a battery, and into the terminal

Resistance

The resistance of a length **L** of cylinder made with resistivity ρ , and cross sectional area **A** is,

$$R=\rho L/A$$
 [Ohms]

Ohm's Law

V = IR (V is voltage drop across resistor, I is current through the resistor, R is resistance)

- V is not necessarily the voltage of the battery!
- Ohmic materials have constant resistance (slope on V vs. I), regardless of what the current is
- Non-Ohmic materials change their "resistance" depending on what the current/voltage is

Electrical Power

$$P = I^2R$$

$$P = V^2/R$$

Capacitors

$$C = Q/V$$
 (C is capacitance, Q is charge on + plate, V is voltage across capacitor)

- Capacitance tells you how well a capacitor can store charge
- Inserting a <u>Dielectric</u> between a capacitor always increases capacitance by a factor of **k**
- Capacitors store energy as well, which is given by

$$E_{capacitor} = \frac{1}{2} QV = \frac{1}{2} CV^2$$

- For a parallel plate capacitor with plates of area A separated by a distance d, capacitance is,

$$C = \varepsilon_o A/d$$

Combining Resistors

Resistors in Series

$$R_{eq} = R_1 + R_2 \qquad \begin{array}{c} R_1 & R_2 \\ \hline \end{array}$$

Note: Resistors in Series always have same current

If circuit has only 1 battery,

Choose resistors, two at a time, and reduce to a single resistor to determine the current through the battery. Then determine how current breaks up at junctions using these rules

Resistors in Parallel

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \xrightarrow{\mathbf{R}_1} \xrightarrow{\mathbf{R}_1} \xrightarrow{\mathbf{I}_{tot}}$$

Note: Resistors in Parallel always have same voltage

If one resistor is 3 times larger than the other, smaller resistor gets 3/4 of the total current $I_{R_1} = \frac{3}{4} I_{tot}$

If one resistor is 5 times larger than the other, $I_{R_1} = \frac{5}{6}I_{tot}$ smaller resistor gets 5/6 the total current

or, if resistors are not a nice ratio use this formula

$$I_{R_1} = I_{tot} \frac{R_2}{(R_1 + R_2)}$$

Combining Capacitors

Capacitors in Series

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} \qquad \frac{C_1 \quad C_2}{\Box \Box \Box \Box}$$

Note: Capacitors in series all have same charge

When you reduce all capacitors to a single C, you can find Q (=CV). Then work backwards to find Q on each capacitor.

Capacitors in Parallel

Note: Capacitors in parallel all have same voltage

For capacitors in parallel, if one capacitor has 3 times more capacitance than the other, it gets 3/4 of the total charge.

Or, if not a nice ratio use,

$$Q_1 = Q_{tot} \frac{C_1}{C_1 + C_2}$$

Note: After a short time, current will no longer flow through a C, and any segment of a circuit with a C will have no current.

Kirchoff's Rules

Junction Rule: $I_{in} = I_{out}$

- Total current flowing into junction equals total current flowing out of junction

Loop Rule: $\Sigma \Delta V = 0$

- The sum of the changes in voltage around any closed loop always equals zero

 $\Delta V = -IR$ (if you pass through resistor in the same direction as current)

 $\Delta V = IR$ (if you pass through resistor in the opp. direction as current)

 $\Delta V = +\varepsilon_{\text{battery}}$ (if you pass through the battery from – terminal to + terminal)

 $\Delta V = -\varepsilon_{battery}$ (if you pass through the battery from + terminal to - terminal)

Terminal Voltage

 $V_{ab} = \varepsilon - Ir$ (V_{ab} is the terminal voltage, ε is the emf of battery, r is internal resistance)

- -Every battery has an internal resistance r which will lower the terminal voltage when current flows
- A 9V battery will not necessarily have a measured terminal voltage of 9V, unless no current flows
- The ϵ of a 9V battery is 9V even when no current flows, but the measured terminal voltage will be less
- Slope of Vab vs. I graph is negative the internal resistance. The y intercept is the emf ε .

Electrical Meters

Voltmeter

- Measures voltage change across circuit element (resistor, battery, etc.)
- Ideally has infinite resistance so it does not draw any current away from circuit
- Needs to be hooked up in **parallel** with circuit element

Ammeter

- Measures current through a circuit element (resistor, battery, etc.)
- Ideally has no resistance so it does not change the current
- Needs to be hooked up in series with circuit element